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Abstract We propose a simple geomehical method which enables us to linl: the topological 
properties of a random walk on the double-punctured plane and the conformal field theoly 
characterized by the central charge c = -2 and the conformal dimension A = -Q. We discuss 
briefly the connection between the topological invariants obtained From the confmmal methods 
and the algebraic Alexander invariants for the simplest non-hivial braid B3. 

1. htroduction 

In the last few years owing to the pioneering works of [1,2] significant progress in 
understanding of the relation among Chern-Simons topological field theory, construction of 
algebraic knot and link invariants and the conformal field theory has been made. But despite 
the general concepts being well elaborated in the field-theoretic context, the application of 
these powerful ideas in related areas of mathematics and physics, such as, for instance, 
probability theory and polymer physics is highly restricted. In our opinion this is due to 
two facts: first, there is the problem of communication, i.e. the languages used by specialists 
in topological field theory and probability theory are completely different at first sight, and, 
second, there are no evident realizations of these field-theoretic ideas in simple geometrical 
examples for physical systems. 

In the present paper we show, in the framework of the differential geometrical approach, 
the connection between the topological properties of a random walk on a double punctured 
plane and the behaviour of the four-point correlaton function in the conformal theory 
with central charge c = -2. Using the conformal methods we construct the non-Abelian 
topological invariants for entanglements of the random walk with the removed points on 
the plane; we also briefly discuss the relation of that problem with the random walk on the 
simplest non-trivial braid group B3. A detailed paper devoted to the investigation of the 
topological properties of random walks on non-commutative groups [3] is now in progress. 
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2. Conformal mapping for a double-punctured plane 

We consider the random walk of total length L with the effective elementary step of length 
1 ( I  = 1) on the complex plane, W, with two points removed. Suppose the coordinates of 
these points are r1 = (0,O) and r2 = (a, 0) (a 5 1). Such a choice does not mean a loss 
of generality because by means of simultaneous rescaling of the effective step, 1, of the 
random walk and of the distance, a, between the obstacles we can always come to the case 
of any arbitrary values of 1 and a. 

The topological constraints for the random walk mean that the loop on W enclosing the 
points r1 and/or rz cannot be continuously (without path rupture) contracted to the point. 

In this paper we restrict ourselves to only the 'critical' case of infinitely long trajectories, 
i.e. we suppose L + CO. In field-theoretic language this means the consideration of 
the massless free field theory on R. Actually, the partition function for random walks 
on IR written in the second quantized form is generated by the scalar-field Hamiltonian 
H = ~(Vlp),  + mlpZ where the mass m is the chemical potential conjugated to the length 
of the path. Thus, for L + CO we have m, = 0 which just corresponds to the critical point 
in the conformal theories [4J. 

It was shown in the paper [5] that it is possible to conslmct the universal covering 
surface 3 for R. We briefly describe the way of doing that. First, each point on W and on 
3 we characterize by the complex coordinates z = x + iy  and r = U + iu correspondingly. 
Now we make three cuts on W between (0,O) and (0, I), between (0 , l )  and (00) and 
between (CO) and (0,O) along the line Imz = 0 as it is shown in figure l(a). These cuts 
separate the upper (Imz > 0) and lower (Imz < 0) half-planes of the plane z. We perform 
the conformal transformation of the half-plane Imz > 0 to the fundamental domain of 
3-the curvilinear zero-angled triangle lying in the half-plane Imr > 0 of the plane r-see 
figure l(6). It has been shown in [6] that this transformation can be realized using modular 
function k2(r), i.e. we have 

I 

where 82(0, 5 )  and @(O, r )  are the elliptic Jacobi 8-functions. We recall their definitions 

It is not hard to proof that the universal covering 3 is now realized as a whole upper 
half-plane Imr z 0 and all images of peculiar (branching) points on W are just transferred 
to the boundary Imr = 0. Speaking more formally, each fundamental domain of 3 should 
be considered as a Reeman sheet corresponding to the fibre bundle of $3. The space 3 has 
the discrete group of motions r2 [7] generated by the basic substitutions 

7 ' 4  T + 2  7'+7/(25+1).  (2) 

3. Non-Abelian topological invariants for a random walk on W 

We distinguish different topological states of the path with respect to the removed points on 
R by the topological invariants constructed from the conformal mapping described above. 
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Figure 1. ( U )  Double-punctured complex plane, 8, with two basic wntom P I  and &; (b)  
universal wvering space, 3, corresponding to the fibre bundle of 8. 

Shown in figure 2 are two closed contours C1 and C, starting and ending at some arbitrary 
point & on W which belongs to the same homology class but have different classes of 
homotopy. On the universal covering 3 the coordinates of the initial and final points of the 
trajectory determine [5 ] :  the corresponding Euclidean coordinates on W; the homotopy class 
of the path on 1. In pmicular, the closed contours on 3 correspond only to the unentangled 
closed contours on R. 

The coordinates of the ends of the trajectory on 3 we use as a topological invariant 
of the corresponding path on W. We should stress that this invariant is complete for our 
problem. it reflects the non-Abelian character of entanglements in the right way and could 
be used for the safe classification of homotopy class of the trajectories on 1. 

The function z(r) has the inversed single-valued function ~ ( z )  = z-'(r) defined in 
the basic domain of 3-the triangle A B C .  We consider the multivalued function f(z) 
determined as follows: 

the function f ( z )  coincides with r(z) in the basic fundamental domain; 
in all other domains of the complex half-plane Imz > 0 the function f(z) is obtained 
from r(z)  by means of analytic continuation of r(z)  through the boundaries of these 
domains using the substitutions (2). 

The explicit form of the function f(z) reads 
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Figure 2. Example of two wnto~ll~ belonging to the same class of homology but having different 
homotopy classes. 

dK 

_. 
. .  

1 0  ~ ( 1 -  gj(i - ZKZ) 

The topological invariant, Inv(C), for the closed contour, C, on the plane z we 
characterize by the values of the initial, fi.(z), and final, ffi.(z), points of the path on 
the half-plane Ims > 0 (see figure I(b) and construct its complex realization, Inv(,)(C), as 
a full derivative along the contour C: 

In other words, the invariant, Inv(C), can be associated with the flux through the contour 
C on the plane ( x ,  y ) :  

Inv(C) = Inv(,.,)(C) = (5) 

where n is the unit vector normal to the curve C and d R  = e, dx + ey dy on the plane 
( x ,  y ) .  Using the simple transformations 

n d R =  e,dy -e,dx = d R  x E 

and 

Vf(x,  y)(dR x E )  = (E x Vf(x ,  Y ) )  d R  
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where E = (0, 0, 1) is the unit vector normal to the plane (x, y), we can rewrite (5) in the 
following form: 

Inv(C) = x Vf(x, y)v dr (6) s, 
where v = dR/ds is the ‘velocity’ along the trajectory and ds is the differential path length. 

x Vf(x, y) (where the function f is defined in (3)) we can 
consider as a non-Abelian generalization of the vector potential of the solenoidal ‘magnetic 
fields’ which are normal to the plane (x, y) and cross the plane in the points +I  and rz .  

The vector product A = 

4. Monodromy transformations and conformal field theory 

Let us consider two basic contours PI and PZ enclosing the branching points z1 = (0.0) 
and z2 = (1,O) on the plane z - s e e  figure 1. The function f(z) (equation (3)) obeys the 
following transformations: 

where 

are the matrices of basic substitutions of the group rz (they are consistent with the definition 

We suppose f(z) to be a ratio of two basic solutions, u1(z) and UZ(Z), of some second- 
order differential equation with peculiar points (21 = (0, O), = (0, l), 23 = (CO)] .  From 
the analytic theory of differential equations [SI it is well known that thesolutions u1(z) and 
uz(z) undergo the following linear transformations when the variable z moves along the 

(2)). 

contom PI and Pz: 

The problem of restoring the form of the differential equation knowing the monodmmy 
matrices &I and 82 has an old history 181 and in our particular case has the solution 

du(z) 1 + (1 - 22)- - -u(z) = 0 .  d2u(z) 
dz 4 

z( l  - z)- 
dzZ 

Now let us ask the following question: is it possible to consider (9) as a degeneration 
equation determining the four-point correlation function of some conformal field theory? 
We show that the answer is positive and the coefficients in (9) completely define the 
corresponding Virasoro algebra. 
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We introduce the conformal operator, ~ ( z ) ,  on the complex plane z. The dimension, A, 
of this operator we define from the conformal correlator 

Let us suppose that ~ ( z )  is the primary field, then the four-point correlation function 
(9(z1)9(zz)9(z3)~(z4)) satisfies the degeneration equation following from the conformal 
Ward identity [4,9, IO]. In the form of a Riemann ordinary differential equation this equation 
on the conformal correlator 

@(ZlZl .  zz. 23) = ~ 9 ~ z ~ P ~ z l ~ P ~ z z ~ P ~ z 3 ~ ~  

with fixed points [z, = (O,O), zz = (1,0), 23 = 001 reads [4,9] 

Performing the substitution 

@(ZlZl, z2, z3) = [z(z - 1)1-2A u(z) 

we get the equation 

Z(Z - l)u"(z) - $(I  -4A)(1 -2z)u'(z)+ $(2A-8A2)u(z) = O  (11) 

which coincides with (9) for one single value of A 

A = -1 
8 '  

The conformal properties of the stress-energy tensor, T(z), are defined by the 
coefficients, L,, in its Lourant expansion, T ( z )  = E,"=-, L,/Z"+'. These coefficients 
form the Virasoro algebra [4] 

IL,, L,I = (n - m)~,+, + hc(n' - n)&+,.o 

where the parameter c is the cen'ual charge of the theory. 
2A(S - 8A)/(ZA + 1) established in [9]  and (12) we obtain 

Using the relation c = 

c = - 2 .  (13) 

We find very interesting the fact mentioned by B Duplantier. He poined out that the 
value A = -$ (equation (12)) coincides with the surface exponent (i.e. with the conformal 
dimension of the two-point correlator near the surface) for the dense phase of the O(n = 0) 
lattice model describing the so-called 'Manhattan random walks' [l I]. 

According to [Ill the value A =--{ belongs to the family of the critical exponents 

xs = $&*, = $(S - 2) (14) 

where S is the number of fluctuating chains tightly together in the bunch connecting the 
points z and z' on the complex plane (see figure 3 and [l l]  for more details). The critical 
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Figure 3. Simplest ‘watermelon‘ canfiguration of the bunch of S = 2 chains having the hivial 
(i.e. conmctable to the point) topological configuration with respect to the peculiar points on W. 

behaviour of the two-point correlation function for the ‘watermelon’ configuration with S 
chains in the bunch has the following scaling form: 

The case S = 1 corresponds to the conformal dimension of the primary fields q(z) 
considered above (10)<13). For S = 2 (14) gives ns = 0 and hence we could expect 
the logarithmic behaviour of the correlation function (15). Using the results of the works 
[12] we can establish that fact directly for the contractible random loop on the plane with 
removed points. 

The group rz has the metrics of the Cayley tree. Introducing the non-Euclidean distance 
on the Cayley tree, q, between the ends of the simplest watermelon configuration with S = 2 
(see figure 3) we have [I21 

where NI and Nz are the lengths of the trajectories in the bunch. The mapping of the 
correlation function (16) of the contractible random walks on the universal covering 9 onto 
the double-punctured complex plane W is given by the convolution [I21 

The critical behaviour of the correlation function (15) can be obtained using the Laplace 
transform: 

G(lz - z’l, mc) = /G(Iz -2‘1, NI, Nz)emc(N1fNzz)dNIdN2. (18) 

Substituting (16), (17) into (18) we get 

G(IZ - 2’1, m,) - K~ (12 - z’I,~Z)I~.~~ - In I L  - 2’1 . (19) 
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Hence the behaviour of the correlation functions (I2), (18) is consistent with (14), (15) 
for the values S = (1,2]. 

The conformal invariance of the random walk [5,6] together with the geometrical 
interpretation of the monodromy properties of the four-point conformal correlator established 
above enable us to express the following. 

Statement. The critical conformal field theory characterized by the values c = -2 and 
A = -4 gives the second quantized representation for the random walk of the infinite 
length on the double-punctured complex plane. 

The conformal field theory with c = -2 and A = -4 has been studied recently in 
[13] as an example of the non-minimal model with the logarithmic-like singularities in 
the correlation functions. Thus the behaviour (19) could be considered as an additional 
confirmation of the statement expressed above. 

5. Topological invariants from the conformal approach and Alexander algebraic 
invariants for braid B3 

Consider the braid group B3 defined by the following relations among generators [PI, pz): 

It is known 1141 that the relations (2h, b) are satisfied for pi (i = 1,2) written in the 
so-called Magnus matrix representation 

(21) 

where t is the 'spectral pammeter'. 

way. Let us consider an arbitrary braid of length L; let it be, for example, 
The Alexander algebraic invariant of the braid B3 can be constructed in the following 

where @ C L )  is the (2 x ;?)-matrix obtained by multiplications of all L elementary matrices 
along the braid, i.e. p(') is a particular representation of the Markov chain. 

The Alexander polynomial invariant now reads [14] 

A l [ t ]  = det [p(') - E] . (23) 

We prove in 131 the following. 
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random walk on the double punctured plane 

I 
I random walk on the P ~ O U D  r. I 

I 

t 

t 

random walk on the Lohachevsky plane 

random walk on the group PSL(2, Z) 

random walk on the braid group 8, 

Figure 4. Relations behveen limiting behaviours of the random walks on rz, B3 and on the 
Lobachevsky plane. 

Theorem. 
(1) Consider the Markov chain of length L with the uniform transition probabilities equal 

to defined on the set of B3 generators (PI, ~ 2 .  p;’, j$). Define the highest power, 
m F ( L ) ,  of the Alexander invariant 

lnAl(t] 
m Y ( L )  = lim - 

r+m lnt 
which plays the role of Lyapunov exponent of the matrix product (22) [15]. 

(2) Consider the random walk of length L which~starts at the point z and finishes at the point 
z’ on the double-punctured plane 8; denote this path C(L).  Define the non-Euclidean 
distance Iq(L)I between the ends of the path C(L) in the covering space 3 (the upper 
half-plane Imt ? 0), 

Itl(L)I = If idz) - fdz’)I = b v ( C ( ~ . ) ) l  (4‘) 

(compare to (4)). 
Now the following relation is valid 

The proof is based on the fact that the group B3 is the central extention of the group 
PSL(2 ,  Z) generated by the matrices (21) for f = -1 and without loss of generality we can 
consider the random walk just on PSL(2, Z). The group PSL(2,  2) has the representation 
in the upper half-plane Imr > 0 with the fundamental domain in the form of a triangle 
with angles (0, n/3, z/3] [7] (compare to the corresponding construction for the group r2). 
From figure 4 it is easy to see that the limit behaviour of the random walks on PSL(2 ,Z)  
and on rz are similar because in both cases they are governed by the Laplacian on the 
Lobachevsky plane. This is the origin of the relation (25). The complete proof of (25) and 
detailed consideration of the random walk on PSL(2,  Z) is given in [3]. Let us note that 
the highest power of the Alexander polynomial, m F ( L ) ,  characterizes the ‘complexity’ 
[16] of the braid and can be used for the rough classification of the homotopy class of the 
braid B3. 
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6. Conclusion 

Instead of discussion we formulate, without proof, the theorem which generalizes the 
statement of section 5. 

Theorem. 
(1) Consider the random braid B, of length L,  i.e. define the uniform distribution on the set 

of braid generators {PI, pz, . . . , !A;', pi ' ,  . . . , !A;?,} and construct the Markov 
chain of length L from these generators. The topological state of the braid 8, we 
characterize by some algebraic polynomial invariant (Alexander, Jones, HOMFLY,. . .). 
Define the 'Lyapunov exponent'-the highest power, mm(L), of these polynomials. 

(2) Consider the random walk of length L on the Lobachevsky plane with the scalar 
curvature A = h(n) (where n is the number of strings in the braid). The non-Euclidean 
distance between the ends of the random walk of length L we denote by Iq(L, A)l. 
Now the following relation is valid: 

S Nechaev and A Vershik 
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